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Summary

1. Dispersal can push population density below strong Allee thresholds ensuring the demise of small founding

populations. As a result, for isolated populations of dispersing organisms, the minimum founding population

size that enables establishment can be quite different from theAllee threshold.

2. We derive an expression for the minimum founding population size for a general integrodifference equa-

tion model of a dispersing population with a strong Allee effect. We demonstrate the utility of the general model

by using it to approximateminimum founding populations for themountain pine beetle.

3. The minimum founding population of the general model increases linearly with the mean squared displace-

ment of the dispersing organism. Transient dynamics of the general model suggest that population density at the

point of introduction will often decrease before increasing, even when the minimum founding population size is

exceeded.

4. Calculation of minimum founding population sizes may prove useful for predicting invasion success based on

propagule size and formaximizing the success of species reintroductions when strongAllee effects exist.

Key-words: biological control, depensation, dispersal, establishment, insect, integrodifference

equation, invasion, mate finding, model, propagule

Introduction

For populations that exhibit positive density dependence, dis-

persal can have negative consequences because it can spread

populations thinly in space (Taylor & Hastings 2005). When

population growth or fitness is positively density-dependent,

the population is subject to an Allee effect (Allee 1931; Ste-

phens, Sutherland & Freckleton 1999). A strong Allee effect

describes the scenario in which population size diminishes

below a critical density threshold and increases above it (Ste-

phens, Sutherland & Freckleton 1999). Allee thresholds are

typically expressed in terms of population densities per unit

area. In organisms that disperse, however, non-spatial Allee

thresholdsmust be interpreted with caution because organisms

are typically not uniformly distributed in space.

Allee effects in demographic data are measured in multiple

ways (Kramer et al. 2009). ComponentAllee effects (Stephens,

Sutherland & Freckleton 1999) are commonly measured by

quantifying the positive impact of population density on per-

capita birth, growth or mortality rates. Demographic Allee

effects (Stephens, Sutherland & Freckleton 1999) are usually

measured by quantifying the positive effect of population den-

sity at some time in the past, on current or future population

densities, or on population establishment or survival probabil-

ity (Kramer et al. 2009). More recently, researchers have

begun to quantifyAllee effects inmoving populations by fitting

spatiotemporal models to data using statistical methods

(Heavilin & Powell 2008). These spatiotemporal models fea-

ture population growth and movement components and

thereby account for dispersal. However, like the Allee thresh-

olds computed using non-spatial models, strong Allee thresh-

olds computed using the parameters of the non-spatial

component of spatiotemporal models are also misleading

when organisms are not uniformly distributed in space.

Dynamic models of moving populations can be continuous

in time, such as reaction–diffusion models (Lewis & Kareiva

1993) with concurrent movement and population growth, or

discrete in time, such as integrodifference equation models

(Kot, Lewis & Van Den Driessche 1996), with sequential dis-

persal and growth processes. Individual-based models can fall

into either category. Regardless of the modelling framework,

the population growth component of the model that controls

the Allee effect is usually expressed as a function of the current

population density and/or the population density at some time

in the past. Although a non-spatial Allee threshold can often

be computed from the population growth component of spa-

tial populationmodels, it is difficult to interpret biologically.

Early work investigated the impact of movement on popula-

tion dynamics in the presence of an Allee effect using reaction–
diffusion models (Bradford & Philip 1970a,b). The authors

investigated steady state solutions on a finite spatial domain

and found that to achieve population persistence, the peak of

the steady state solution must be larger than the non-spatial

Allee threshold. The authors identified critical starting*Correspondence author. E-mail: goodsman@ualberta.ca
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distributions of organisms such that populationswould persist.

Lewis & Kareiva (1993) extended this work to include an

advection term, and also derived critical uniform initial condi-

tions, defined in terms of the radius of the initial uniform popu-

lation, such that a population subject to a strong Allee effect

could establish. Petrovskii & Shigesada (2001) derived what

they call the critical aggregation. The critical aggregation is the

starting distribution with a specific amplitude and width such

that an invasion can occur in a single species reaction–diffusion
model that features a strong Allee effect (Petrovskii & Shige-

sada 2001). Later, Soboleva et al. (2003) showed that for a

reaction diffusion model in two spatial dimensions, initial con-

ditions that were not radially symmetrical enabled populations

(or genes) to establish at lower densities than if they were sym-

metrically distributed. For integrodifference equation models

of biological invasions in which the organism is subject to an

Allee effect, Kot, Lewis & Van Den Driessche (1996) also

showed that there is a critical radius of the uniform initial

population in space such that invasion can occur.

Using simulations of spatially explicit models, researchers

have found that one consequence of dispersal in populations

with strong Allee effects is that when populations are intro-

duced only at a single point in space, they must be introduced

in large numbers to establish (Hopper & Roush 1993; Etienne

et al. 2002; Robinet et al. 2008; Robinet & Liebhold 2009).

Analyses of empirical data on the establishment of parasitoids

introduced for the biological control of lepidopterans have lar-

gely confirmed the existence of critical numbers of introduced

individuals whichmust be surpassed for establishment to occur

(Hopper &Roush 1993).

Our researchwas inspired by the idea of a point introduction

as described by Hopper & Roush (1993) or by an introduction

via firewood infested with an invasive insect such as the emer-

ald ash borer (Herms & McCullough 2014). This differs from

previous theoretical work in that we are not interested in an ini-

tial distribution of the invasive organism, but rather in a point

source. In addition, we consider the problem on an infinite spa-

tial domain and emphasize transient rather than asymptotic

dynamics. In this context, we define the minimum founding

population as the minimum number of individuals which, if

introduced at a point in space, will persist there indefinitely in

spite of dispersal and a strong Allee effect. Mathematically we

define theminimum founding population as the founding pop-

ulation such that themaximumpopulation density never drops

below the Allee threshold as t?∞ where t represents the pas-

sage of time since the founding event at t = 0. Unlike the Allee

threshold, the minimum founding population has a clear bio-

logical definition and interpretation in spatial models of dis-

persing organisms.

We propose an idealized integrodifference model for a dis-

persing organism subject to a strong Allee effect and produce

an analytic solution that we use to derive an expression for the

minimum founding population. Our idealized integrodiffer-

ence equation model with an Allee effect can be perceived as a

limiting case of more realistic models of invasion, and thus, we

use it to estimate approximate minimum founding populations

for the mountain pine beetle (Dendroctonus ponderosae Hop-

kins).

Materials andmethods

Weused integrodifference equationmodels to represent spatiotemporal

dynamics of organisms with distinct dispersal and growth stages (Kot,

Lewis & Van Den Driessche 1996). Integrodifference equation models

of population dynamics comprise population growth and dispersal

components. A prototypical one-species example in two spatial dimen-

sions is as follows:

Ntþ1ðxÞ ¼
Z
R2

NtðyÞfðNtðyÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Growth function

kðx� yÞ|fflfflfflfflffl{zfflfflfflfflffl}
Dispersal
kernel

dy; eqn 1

where NtðxÞ is the population density at location x ¼ ðx1; x2Þ and

time t. The growth functionNtðyÞfðNtðyÞÞmaps the population density

at time t and location y onto the population density at that location

after reproduction, and fðNtðyÞÞ is the per-capita growth function. The

dispersal kernel (k(x�y)) is a continuous probability density function

that describes the probability of moving from location y to location x

after time t but before time t + 1. Note that the integrodifference equa-

tion gives the distribution of the organism after the dispersal event.

IDEAL IZED MODEL

We used an idealized integrodifference equation model to study how

dispersal and the strong Allee threshold interact to produce the mini-

mum founding population in organisms that arrive at a location, then

disperse and thereafter grow and disperse repeatedly. We assume that

N0 individuals arrive at a previously uninhabited point location

y = (0, 0). Individuals then disperse according to the Gaussian kernel

in two spatial dimensions:

kðx� y;r2Þ ¼ 1

2pr2
exp

��jx� yj2
2r2

�
; eqn 2

wherer2 is the variance of theGaussian distribution, which determines

howwidely the organism disperses. After this initial dispersal event, the

distribution of the organism in space is given by

N1ðxÞ ¼ N0kðx;r2Þ ¼ N0
1

2pr2
exp

��ðjxjÞ2
2r2

�
: eqn 3

The spatial distribution of the population over time thereafter is

given by (1) with kðx� yÞ ¼ kðx� y;r2Þ.
We model population growth with the following per-capita growth

function:

fðNtðyÞÞ ¼ R½NtðyÞ�c�1; eqn 4

where c > 1. This per-capita growth function has no mechanistic bio-

logical underpinning, but rather produces a succinct growth model,

which we call the power growth function, when it is multiplied by

NtðyÞ:
gðNtðyÞÞ ¼ R½NtðyÞ�c: eqn 5

This power growth function has anAllee threshold/:

/ ¼
�

1

R

�1=ðc�1Þ
; eqn 6

below which the population will decline and above which the popula-

tion will grow. We derive an analytic solution for the nonlinear
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integrodifference equation model (eqns 1, 2 and 4). The analytic solu-

tion is

NtðxÞ ¼ R
ct�1�1
c�1 ðN0Þc

t�1

k

�
x;

�
ct � 1

ðc� 1Þct�1

�
r2

�
hðtÞ; eqn 7

where

hðtÞ ¼
Yt
i¼2

�
1

c
�
2pr2 ci�1�1

ðc�1Þci�2

�c�1

�ct�i

; eqn 8

and t > 1 is a positive integer (derivation in Appendix S1). Using this

analytic solution, we can derive the approximate minimum founding

populationNMFP (details and derivation inAppendix S1):

NMFP1
� 2pr2/

c
1

c�1þ 1

cM�1

c� 1
exp

�XM
i¼2

½ðc� 1Þc1�i� log
�
ci�1 � 1

ci�2

��
;

eqn 9

where M controls the accuracy of our approximation of the infinite

product in (8) as t?∞. Choosing larger values ofM (a positive integer)

results in a better approximation [see Data S2 for sample code that can

be used to compute (9)].

If instead we assume that the organism arrives at a new location and

then reproduces before dispersing, the minimum founding population

NMFP2
follows from (9) as

NMFP2
¼ ½ð1=RÞNMFP1

�1=c: eqn 10

MINIMUM FOUNDING POPULATION IN OTHER SYSTEMS

The idealized solvable integrodifference equation with a strong Allee

effect described in the previous section can be used to approximate the

minimum founding population for more general models based on the

integrodifference equation framework.

Consider an integrodifference equation model with a growth com-

ponent that features a non-spatial Allee threshold equal to w which

can be computed numerically or analytically. We equate w to the non-

spatial Allee threshold of the power growth function (/) given in (6)

to obtain

w ¼
�

1

R

�1=ðc�1Þ
: eqn 11

We then obtain the value of R such that the Allee threshold of the

power growth function (5) matches that of the nonlinear function in

the systemwewish to approximate:

R ¼ w1�c; eqn 12

which contains an unspecified parameter c. However, in addition to

matching the Allee threshold, we also want the approximating power

growth function to have the same slope at the Allee threshold as our

nonlinear function. We begin by computing the slope of the nonlinear

function (g) at the Allee threshold. We then equate this to the deriva-

tive of the power function with respect to Nt at its Allee threshold

Nt ¼ / ¼ w:

Rcwc�1 ¼ g: eqn 13

By replacing R in (13) with the right hand side of (12), we see that

c = g. Thus, we can use the power function to approximatemore com-

plex nonlinear functions at their Allee thresholds by setting c equal to

the slope of the original nonlinear growth function at its Allee threshold

and by setting R ¼ w1�c. The most important caveat when approxi-

mating nonlinear functions using the power function in this way is that

the nonlinear function must be concave up at its Allee threshold

because the power growth function is always concave up.

The accuracy of minimum founding population estimates for inte-

grodifference equation models with Gaussian dispersal kernels and

arbitrary nonlinear functions depends on how well the nonlinear func-

tions are approximated at their Allee threshold by the power growth

function. Fortunately, many popular discrete-time difference equa-

tion models that feature Allee effects are well approximated at their

Allee thresholds by a power growth function when the Allee threshold

is small. In Table 1, we list some popular difference equations with

Allee effects and their smallN approximations. Note that all but one of

these reduces to a power function with a power greater than one when

N is small.

NUMERICAL SOLUTIONS TO INTEGRODIFFERENCE

EQUATIONS

We compared our approximate minimum founding population to

minimum founding populations discovered by trial and error

simulations of a mountain pine beetle integrodifference model

(Heavilin & Powell 2008). The method that we used to simulate our

integrodifference equations models is based on a tutorial by Jim Powell

(http://www.math.usu.edu/powell/wauclass/node1.html) and on the

appendix of Andersen (1991).

Boundary conditions on all four sides of the spatial domain for our

simulations were reflecting, but all simulations were performed on large

spatial domains such that interactionwith the boundaries wasminimal.

Table 1. Some univariate difference equations for organisms with non-overlapping generations that experience strong Allee effects. We computed

the small population (N) approximation for each difference equation to illustrate why power growth models approximate them well when popula-

tions are small. For brevity, the parameters in the original models are replaced with r1, r2, r3, etc. We refer the interested reader to the original work

for parameter definitions and units. Note that all but the modified Ricker difference equation have small population approximations that are power

functions with powers >1

Model Name SmallN

Ntþ 1 ¼ r1N
r2
t

r3 þN
r2
t

; r2 [ 1 SigmoidBeverton-Holt* Ntþ 1 � r1N
r2
t

r3

Ntþ 1 ¼ r4N
2
t

r5 þ 2Nt þN2
t =r6

Beverton-Holt withmate-findingAllee effect† Ntþ 1 � r4N
2
t

r5

Ntþ 1 ¼ Ntexpðr7ð1� Nt

r8
Þ Nt�r9

r8
Þ ModifiedRicker‡ Ntþ 1 � expð� r7r9

r8
ÞNt

Ntþ 1 ¼ r10Ntð1� expð�r11NtÞÞ Mate-findingAllee effect§ Ntþ 1 � r10r11N
2
t

*Thomson (1993).
†Veit &Lewis (1996).
‡Liebhold&Bascompte (2003).
§Dennis (1989).
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As our objective was to investigate when populations go extinct due to

spatial Allee effects, we chose reflecting rather than absorbing bound-

ary conditions to prevent populations from going extinct due to disper-

sal out of the domain.

Our simulations are coded in open source R software (R Core Team

2015) and theRcpp package (Eddelbuettel &Romain 2011; Eddelbuet-

tel 2013) in R to speed up computation by interfacingwithC++.We also

used the rootSolve (Soetaert 2009; Soetaert &Herman 2009) R package

to compute the roots of nonlinear difference equations. Example code

for simulations is supplied in theData S1.

Results

IDEAL IZED MODEL

By inspecting (9), it is clear that for our idealized model, the

minimum founding population increases linearly with mean

squared displacement of dispersers in two spatial dimensions

(2r2) and with the variance of the two-dimensional Gaussian

kernelr2 (Fig. 1a). For example, when c = 2, (9) reduces to

NMFP1
� C|{z}

Constant

� ð2r2Þ|fflffl{zfflffl}
Mean
squared

displacement

�ð1=RÞ|fflffl{zfflffl}
Allee

threshold

; eqn 14

where the constantC represents all of the terms in (9) that con-

tain c = 2. The R parameter dictates how distant the Allee

threshold is from Nt ¼ 0 (see eqn 6). From (14), we can see

that the minimum founding population varies inversely withR

(Fig. 1b). We can plot level sets of (13) (Fig. 1c). It is clear

from the level sets of (14) that tomaintain a constantminimum

founding population with increasing variance of the Gaussian

kernel in two dimensions, the R parameter must increase as a

linear function of variance (Fig. 1c), which results in an Allee

threshold that quickly approaches zero.

When organisms reproduce before they disperse from their

initial location, the minimum founding population increases

nonlinearly with mean squared displacement (or the variance

of the Gaussian kernel). This is evident from (10), which sim-

plifies to

NMFP2
� ð1=RÞ½Cð2r2Þ�1=2; eqn 15

when c = 2. When c = 2, the minimum founding population

increases linearly with the standard deviation, but this will not

be generally true if c 6¼ 2.

Our idealized integrodifference equation model exhibits

three transient behaviours after the initial colonists arrive and

disperse that depend on the initial population density. If the

initial population density is below theminimum founding pop-

ulation, the peak of the distribution of individuals over space

will fall after every generation (Fig. 2a), even if part of the den-

sity distribution of individuals remained above the Allee

threshold for several dispersal events.

Transient behaviour when the initial population is above the

minimum founding population depends on how much the

minimum founding population is exceeded. If the initial popu-

lation size is slightly above the minimum founding population,

the peak of the distributionwill fall initially but will later rise as

the effect of population growth overpowers the negative effect

of dispersal (Fig. 2b). If the initial population size is consider-

ably above theminimum founding population size, the peak of

the distribution will rise continuously (Fig. 2c). All of these

dynamics can be conveniently compared using the analytic

solution (7) solved for the location of introduction (x = (0, 0))

(Fig. 2d).Minute deviations from theminimum founding pop-

ulation size have dramatic consequences for population

dynamics (Fig. 2d) leading to either extinction or population

explosion. When populations are introduced at well-defined

points in space below their minimum founding population

sizes, the population can appear to expand initially before
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Fig. 1. Solutions of (9) or equivalently (14) for the idealized integrodif-

ference equation model with c = 2, and varying R and r parameters.

The (a) minimum founding population varies linearly with the variance

of the two-dimensional Gaussian dispersal kernel and (b) varies inver-

sely with the R parameter of the power growth function. The (c) level

sets of (14) for each possible minimum founding population are linear

functions of the variance of theGaussian dispersal kernel in two dimen-

sions.
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imploding (Fig. 3). This can result in ephemeral local invasions

that expand in space before collapsing on their own.

MINIMUM FOUNDING POPULATION FOR THE MOUNTAIN

PINE BEETLE

In North America, the mountain pine beetle (D. ponderosae

Hopkins) causes widespread mortality in most native species

of pine tree and sometimes causes outbreaks in which continu-

ous expanses of pine are affected (Safranyik & Carroll 2006).

To overcome a potential host tree’s resistance, the mountain

pine beetle must mass-attack, which leads to an Allee effect

because mountain pine beetles are unable to colonize high-

quality trees when their densities are too low (Raffa & Berry-

man 1983) . The mountain pine beetle life cycle completes in

1 year in most locations in North America, and trees typically

die after being colonized by mountain pine beetle (Safranyik &

Carroll 2006). Thus, the local dynamics of the mountain pine

beetle can be represented using a difference equation, and

dispersal can be incorporated using integrodifference equa-

tion models (Heavilin & Powell 2008). We approximated the

minimum founding population for the mountain pine beetle

based on amodel proposed byHeavilin&Powell (2008):

Itþ1ðxÞ|fflfflffl{zfflfflffl}
Beetle
infested
trees

¼
Z
R2

mðItðyÞÞStðyÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Beetle
growth
function

kðx� y;r2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Gaussian
dispersal
kernel

dy; eqn 16a

Stþ1ðxÞ|fflfflfflffl{zfflfflfflffl}
Susceptible

host
trees

¼ StðxÞ|fflffl{zfflffl}
Susceptibles in

previous
generation

� Itþ1ðxÞ|fflfflffl{zfflfflffl}
Recently
infested
trees

; eqn 16b

in which ItðxÞ is the density of mountain pine beetle-infested

pine trees and StðxÞ is the density of susceptible host trees at

location x at time t. The isotropic Gaussian kernel

(kðx� y; r2Þ) is the same as in (2), andmðItðyÞÞ is a nonlinear
function that describes the proportion of susceptible trees that

are successfully attacked by mountain pine beetles as a func-

tion ofmountain pine beetle-infested tree density at time t:
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Fig. 2. Transient dynamics when a population initially lands at x = (0, 0) in a two-dimensional spatial domain and then disperses according to (2)

with parameter r = 4. Subsequently, the dynamics are iterated with (1) with the power growth function (5) and parameters R = 0�5 and c = 1�5.
The minimum founding population (NMFP) computed using (9) for these parameters is 1509 individuals. One-dimensional slices through the centre

of two-dimensional population density distributions after the second, fourth and sixth dispersal events are shown with (a) a founding population of

1200 individuals (less than theNMFP), (b) a founding population of 1550 individuals (slightly higher than theNMFP) and (c) a founding population of

1750 individuals (much higher than the NMFP). Alternatively, (d) transient dynamics of the peak population density can be visualized by plotting

solutions of (7) for x = (0, 0) as a function of t.
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mðItðyÞÞ ¼ ½ItðyÞ�2
a2 þ ½ItðyÞ�2

; eqn 17

wherein a represents the half saturation constant or the density
of infested trees at time t such that half of the susceptible pine

trees will become infested by time t + 1. Note that when

ItðyÞ\\ 1;mðItðyÞÞ � ð1=a2Þ½ItðyÞ�2. In other words, when

ItðyÞ is near zero, (15) behaves approximately like a power

function with a power of two. The a and r parameters were

estimated by Heavilin & Powell (2008) by fitting (16) to data

from the Sawtooth National Recreation Area in central Idaho

(Table 2).

For the purposes of our analysis, we will ignore negative

density dependence in the mountain pine beetle population as

a result of host depletion and set the number of susceptible

trees to a constant (S) resulting in the following simplified inte-

grodifference equation model for the distribution of mountain

pine beetle-infested trees over time:

Itþ1ðxÞ|fflfflffl{zfflfflffl}
Beetle
infested
trees

¼
Z
R2

mðItðyÞÞðSÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Simplified beetle

growth
function

kðx� y;r2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Gaussian
dispersal
kernel

dy: eqn 18

Using the parameter estimates from Heavilin & Powell

(2008), we were able to computeR and c for two power growth
functions that approximated mðItðyÞÞðSÞ near the Allee

threshold (Table 2). Note we fixed S = 0�0257 stems m�2

which is the average density of lodgepole pine stems estimated

by Heavilin & Powell (2008). The power growth function (5)

matched the simplified mountain pine beetle growth function

featured in (18) very well near theAllee threshold (Fig. 4).
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Fig. 3. The dynamics of a failed invasion modelled using the idealized integrodifference eqn (1) featuring the power growth function (5). Parameters

were set tor = 4 m,R = 0�2, and c = 2.We (a) introduced 1000 individuals at the spotmarkedwith anXknowing that theminimum founding pop-

ulation (NMFP) was 1294�214 individuals. At first, the population expanded (b), but the density diminished at the location of introduction (c) even

while the population expanded in space. Eventually, the population contracted (d–f) and themaximumpopulation density fell below the non-spatial

Allee threshold (5 individuals m�2) leading to population collapse. Such ephemeral population expansions may be commonwhen populations start

out with an insufficient number of individuals.

Table 2. Parameter estimates for (16) after it was fitted to two spa-

tiotemporal data sets (separate time series) by Heavilin & Powell

(2008). Parameter estimates for the power growth function approxima-

tion of the simplifiedmountain pine beetle growth function in (18) with

a constant number of susceptible host trees (S = 0�0257 stems m�2)

are also given. The parameters of the power growth function approxi-

mation were obtained as described in the methods section using (12)

and (13)

Time series Parameter type Parameter Estimate Units

1990–1993 Dispersal r 12�251 m

Growth function a 3�096e-03 Stems m�2

Power growth

function

R 2091�873 Stems m�c

Power growth

function

c 1�971 Unitless

1995–2001 Dispersal r 11�221 m

Growth function a 1�167e-03 Stems m�2

Power growth

function

R 18 077 Stems m�c

Power growth

function

c 1�996 Unitless
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Using (9) withM = 100 and theR and c parameters given in

Table 2, we computed the approximate minimum founding

population for the mountain pine beetle system. For the 1990–
1993 time series, the non-spatial Allee threshold was 3�789e-04
mountain pine beetle-infested stems m�2, while the approxi-

mate minimum founding population was 0�933 beetle-infested
trees or the equivalent number of beetles. For the 1995–2001
time series, the non-spatial Allee threshold was 5�311e-05
mountain pine beetle-infested stems m�2 and the approximate

minimum founding population was 0�108 beetle-infested trees

or the equivalent number of beetles.

To test the accuracy of our approximations of the minimum

founding populations for the mountain pine beetle system, we

compared them to numerical simulations of (16) with different

starting densities of mountain pine beetle-infested trees. The

approximate minimum founding populations computed using

(9) were slightly biased relative to the numerically computed

minimum founding populations. For example, for the 1990–
1993 time series, our minimum founding population approxi-

mated using (9) was 0�933 beetle-infested trees or the equiva-

lent number of beetles, but the minimum founding population

obtained by simulating (16) was 1�012 beetle-infested trees or

the equivalent number of beetles (8% higher than the approxi-

mate minimum founding population). When the Allee thresh-

old was low as in the 1995–2001 time series, however, the

approximate minimum founding population was 0�1084 bee-

tle-infested trees or the equivalent number of beetles compared

to the simulated 0�1094 beetle-infested trees or the equivalent

number of beetles (1% higher than the approximate minimum

founding population).

I
t
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Fig. 4. Mountain pine beetle growth functions assuming a constant number of susceptible host trees (S = 0�0257 stems m�2) and no depletion over

time (simplified growth function) with parameters estimated from two spatiotemporal data sets by Heavilin & Powell (2008). The growth curve

resulting from (a) a = 3�098e-03 stems m�2 estimated from the first data set shows an inflection point and when magnified (b) the strong Allee

threshold can be seen (open circle). The growth curve resulting from (c) a = 1�167e-03 stems m�2, estimated from the second data set results in (d)

an even smaller Allee threshold (open circle). The power curve approximation withR and c parameters given in Table 2 approximates both moun-

tain pine beetle growth functions very well near the strongAllee threshold.
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Discussion

Although it is related to the strong Allee threshold, the mini-

mum founding population is not directly comparable to it. The

strong Allee threshold has units of individuals per unit area,

whereas the minimum founding population has units of indi-

viduals. In the context of point introductions of dispersive spe-

cies, the minimum founding population statistic is easier to

understand and apply than the strong Allee threshold because

an initial point density has no singular interpretation in terms

of individuals per unit area. For example, an introduction of

10 individuals at a point in space may consider a density of

10 individuals m�2 or 10 individuals ha�1 (which is equiva-

lent to 1e-3 individuals m�2), depending on how the

researcher defines a unit of area. It is, therefore, difficult to

determine whether or not a point introduction of an invasive

species exceeds a critical density required for establishment in

the absence of theminimum founding population concept.

When organisms disperse after they arrive at a new location

and then reproduce, the minimum founding population in our

idealized model increased linearly with the mean squared dis-

placement or, alternatively, with the variance of the Gaussian

dispersal kernel in two dimensions. In addition, the minimum

founding population was inversely proportional to the R

parameter of the power growth function. An argument for the

generality of these findings can be made based on their similar-

ity to relationships between minimum founding populations

and mean squared displacement and net reproductive rates

numerically computed for a reaction diffusion equation model

featuring a strong Allee effect generated by mating failure

[compare Fig. 1A,B to Fig. 6A and Fig. 6C in Hopper &

Roush (1993)]. When organisms reproduce immediately after

arriving at new location and then disperse, the minimum

founding population increases linearly with the mean squared

displacement raised to a power <1. Thus, reproducing before

dispersing drastically reduces the minimum founding popula-

tion required for persistence.

The accuracy of the minimum founding population esti-

mate obtained using our idealized integrodifference equa-

tion model depends on how well its growth and dispersal

components approximate reality or, alternatively, how well

they approximate a less idealized model. Many difference

equations that describe population growth in the presence

of an Allee effect are well approximated by the power

growth function when the population density is much smal-

ler than one. For these, the accuracy of the minimum

founding population estimate obtained using the idealized

integrodifference equation model will increase as the Allee

threshold decreases. This is evident in the mountain pine

beetle case study that we present here. In the first time ser-

ies (1990–1993), the non-spatial Allee threshold was 3�789e-
04 infested stems m�2 and the approximate minimum

founding population was 8% below what it should have

been. In the second time series (1995–2001), the non-spatial

Allee threshold was 5�311e-05 infested stems m�2 and the

approximate minimum founding population was only 1%

below what it should have been.

A second potential source of error in the idealized integrodif-

ference equationmodel arises due to its reliance on theGaussian

dispersal kernel. Dispersal in many species is better described by

Leptokurtic kernels, such as the Laplace kernel (Kot, Lewis &

Van Den Driessche 1996). To address this issue, the Gaussian

dispersal kernel in (1) can be replaced with a Laplace kernel

(Powell & Zimmermann 2004;Heavilin & Powell 2008):

kðx� y; bÞ ¼ 1

2pb2
exp

��1

b
jx� yj

�
; eqn 19

where |x�y| represents the Euclidean distance between x and

y. The variance of (19) is 2b2. As the minimum founding pop-

ulation for our idealized integrodifference equation model

increases linearly with the variance of the Gaussian kernel

(14), we make the following conjecture: the minimum found-

ing population for the analogous integrodifference equa-

tion model with the power growth function and the Laplace

kernel should increase linearly with b2. Trial and error simula-

tions with a varying b parameter support this contention

(Fig. 5). Therefore, minimum founding population estimates

based on the Gaussian kernel will be accurate when extrapo-

lated to organisms that disperse according to the Laplace ker-

nel provided the variance of the Gaussian kernel in the

idealized model matches the variance of the Laplace kernel

(Fig. 5). Although they are well supported by simulations,

these arguments are not mathematically rigorous and would

benefit from a mathematical proof or a derivation of the

appropriate minimum founding population expression.

When individuals are introduced at a single point in space at

numbers just above the minimum founding population, dis-

persing organisms that are subject to strong Allee effects exhi-

bit a transient behaviour that is not predicted by non-spatial

Allee effect models: at that point, the population density ini-

tially decreases before rebounding and increasing. The initial

decrease in population density at the point of introduction in

populations that disperse may lead managers to falsely believe

that the population is below the Allee threshold and will there-

fore go extinct. Dynamics such as these, in which there is a

0 6 12 18
b2

0

2000

4000

6000

N
M

FP

Simulated minimum founding population

Theoretical conjecture

Fig. 5. Minimum founding populations obtained by trial and error

simulations of the idealized integrodifference equation model (1) with

the Laplace kernel (19) with a varying b parameter (b = {1, 2, 3, 4}).
Population growth for the idealized model with a Laplace kernel was

simulated using the power growth function (5) with R = 0�1 and

c = 2. The line representing our conjecture is (14) with r2 ¼ 2b2.

These simulations support the conjecture that the idealized model with

a Gaussian kernel can be used to obtain estimates of the minimum

founding population with a Laplace kernel by moment matching

(matching the variance).
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time-lag before invasion becomes evident, have been fre-

quently observed in introductions of invasive species (Crooks

2005). While some authors have attributed this lag phe-

nomenon to a period of genetic adaptation, others argue, as we

do, that it is simply a consequence of dispersal from well-

defined points of introduction (Hopper & Roush 1993; Shige-

sada&Kawasaki 1997).

One difficulty associated with applying the minimum

founding population concept to real populations is that the

underlying model is deterministic and demographic stochas-

ticity may explain the high probability of extinction when

populations are small (Dennis 1989; Jerde & Lewis 2007;

Jerde, Bampfylde & Lewis 2009). Demographic stochasticity,

however, does not preclude the importance of Allee effects.

Jerde, Bampfylde & Lewis (2009) found evidence for Allee

effects even in populations with high demographic stochastic-

ity. Aside from demographic stochasticity, our idealized inte-

grodifference model also ignores aggregation. Aggregation

diminishes the negative impacts of Allee effects and can lower

Allee thresholds themselves (Padron & Trevisan 2000;

Kanarek et al. 2013). In fact, aggregation may explain why

Allee thresholds that are quantified using demographic data

are consistently low (Boukal & Berec 2002; Heavilin & Powell

2008). Including aggregation in the dispersal component of

integrodifference equation models makes analytic calculation

of the minimum founding population difficult. However, min-

imum founding populations can be computed numerically by

trial and error simulation for more realistic models. Even

when minimum founding populations are computed numeri-

cally, the approximate minimum founding population size

computed using our idealized integrodifference model will

provide a good starting estimate that will prevent searching

for the minimum founding population at values far above it.

In this paper, we have defined the minimum founding popu-

lation for organisms with strong Allee effects as the minimum

population size which will eventually grow and expand after a

point introduction. If the minimum founding population is

not surpassed at the point of introduction, the population will

eventually go extinct. While the minimum founding popula-

tion is driven by the strong Allee effect, it is distinct from the

Allee threshold in that it has a clear interpretation for point

introductions. The idea of a minimum founding population is

closely related to the concept of propagule size, which is

defined as the number of individuals in a group that initially

arrive at a location (Simberloff 2009). Propagule size is one of

the most generally important determinants of invasion success

(Von Holle & Simberloff 2005; Colautti, Grigorovich &MacI-

saac 2006; Simberloff 2009). Thus, we expect that calculation

of minimum founding populations using models may prove

useful for the control of invasive species that may be acciden-

tally introduced and desirable species that may be intention-

ally introduced.
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